ΘΕΜΑ Α

A1. Θεωρία, σελ. 31 σχολ. βιβλίου.
A2. Θεωρία, σελ. 148 σχολ. βιβλίου.
A3. Θεωρία, σελ. 96 σχολ. βιβλίου.
A4. α) Λ, β) Σ, γ) Λ, δ) Σ, ε) Σ.

ΘΕΜΑ Β

B1. Αφού η διάμεσος αντιστοιχεί στο 50% των παρατηρήσεων, από το ιστόγραμμα αθροιστικών σχετικών συχνοτήτων θα είναι δ = 25.

B2. Αφού η διάμεσος αντιστοιχεί στο 50% και είναι δ = 25 θα είναι

\[a + 4 + 3a - 6 = 2a + 8 + a - 2 \Rightarrow a + 3a - 2a - a = 4 + 6 + 8 - 2 \Rightarrow a = 8 \]

Άρα ο πίνακας συχνοτήτων της κατανομής των χρόνων θα είναι

<table>
<thead>
<tr>
<th>χρόνος (λεπτά)</th>
<th>(x_i)</th>
<th>(v_i)</th>
<th>(f,%)</th>
<th>(N_i)</th>
<th>(F,%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5-15)</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>[15-25)</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>[25-35)</td>
<td>30</td>
<td>24</td>
<td>40</td>
<td>54</td>
<td>90</td>
</tr>
<tr>
<td>[35-45)</td>
<td>40</td>
<td>6</td>
<td>10</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B3.

Είναι \(\overline{x} = \frac{\sum_{i=1}^{4} v_i x_i}{v} = \frac{10 \cdot 12 + 20 \cdot 18 + 30 \cdot 24 + 40 \cdot 6}{60} = \frac{1440}{60} = 24 \) λεπτά.

Επίσης \(S^2 = \frac{\sum_{i=1}^{4} v_i (x_i - \overline{x})^2}{v} = \frac{v_1 (x_1 - \overline{x})^2 + v_2 (x_2 - \overline{x})^2 + v_3 (x_3 - \overline{x})^2 + v_4 (x_4 - \overline{x})^2}{v} = \)

\[= \frac{12 (10 - 24)^2 + 18 (20 - 24)^2 + 24 (30 - 24)^2 + 6 (40 - 24)^2}{60} = \]

\[= \frac{12 \cdot 195 + 18 \cdot 16 + 24 \cdot 36 + 6 \cdot 256}{60} = \frac{5040}{60} = \frac{504}{6} = 84. \]
Άρα η τυπική απόκλιση είναι \(S = \sqrt{s^2} = \sqrt{84} \approx 9,17 \) λεπτά.

Β4.

Από 35 έως 45 έχουμε το 10% των παρατηρήσεων και έστω \(x \)% το ποσοστό των παρατηρήσεων από 37 έως 45. Τότε θα είναι:

\[
\begin{align*}
\frac{45 - 35}{45 - 37} &= \frac{10}{x} \quad \Rightarrow \quad \frac{10}{10} = \frac{10}{8} \quad \Rightarrow \quad 10x = 80 \quad \Leftrightarrow \quad x = 8\%.
\end{align*}
\]

ΘΕΜΑ Γ

Γ1. Αν \(\Gamma \) και \(I \) είναι τα ενδεχόμενα ένας μαθητής να μαθαίνει αντίστοιχα Γαλλικά, Ισπανικά, τότε είναι:

\[
\begin{align*}
P(\Gamma \cup I) &= \lim_{x \to -1} \frac{2(\sqrt{x^2 + 3} - 2)}{x^2 + x} = \lim_{x \to -1} \frac{2(\sqrt{x^2 + 3} - 2)(\sqrt{x^2 + 3} + 2)}{x(x + 1)(\sqrt{x^2 + 3} + 2)} = \lim_{x \to -1} \frac{2(x - 1)(x + 1)}{x(x + 1)(\sqrt{x^2 + 3} + 2)} \\
&= \lim_{x \to -1} \frac{2(x - 1)}{x(\sqrt{x^2 + 3} + 2)} = \lim_{x \to -1} \frac{2(x - 1)}{x}\sqrt{x^2 + 3} + 2 = 1.
\end{align*}
\]

Άρα το ενδεχόμενο ο μαθητής να μαθαίνει τουλάχιστον μια από τις 2 γλώσσες είναι βέβαιο.

Γ2. Είναι

\[
P(\Gamma) = \frac{3\nu}{\nu + 1}, \quad P(I) = \frac{\nu + 2}{\nu + 1}, \quad P(\Gamma \cap I) = \frac{\nu}{\nu + 1}, \quad P(\Gamma \cup I) = 1.
\]

Όμως \(P(\Gamma \cup I) = P(\Gamma) + P(I) - P(\Gamma \cap I) \), άρα:

\[
1 = \frac{3\nu}{\nu + 1} + \frac{\nu + 2}{\nu + 1} - \frac{\nu}{\nu + 1} \quad \Leftrightarrow \quad \nu^2 + 1 = 3\nu + \nu + 2 - \nu \quad \Leftrightarrow \quad \nu^2 - 3\nu = 0 \quad \Leftrightarrow \quad \nu = 0 \quad ή \quad \nu = 3.
\]

Επειδή \(\nu \geq 3 \) προκύπτει \(\nu = 3 \).

Γ3. Το ενδεχόμενο ο μαθητής να μαθαίνει μόνο μία από τις δύο γλώσσες είναι το:

\[
(\Gamma - I) \cup (I - \Gamma).
\]

Είναι \(P((\Gamma - I) \cup (I - \Gamma)) = P(\Gamma) + P(I) - 2P(\Gamma \cap I) = \frac{9}{10} + \frac{5}{10} - 2 \cdot \frac{4}{10} = \frac{6}{10} = \frac{3}{5} \).

Γ4. \(P(\Gamma \cap I) = \frac{4}{10} = \frac{2}{5} \). Όμως \(P(\Gamma \cap I) = \frac{N(\Gamma \cap I)}{N(\Omega)} \).

\[
\text{Έτσι} \quad \frac{N(\Gamma \cap I)}{N(\Omega)} = \frac{2}{5} \quad \Leftrightarrow \quad \frac{32}{5} = \frac{2}{5} \quad \Leftrightarrow \quad N(\Omega) = 80.
\]
ΘΕΜΑ Δ

Δ1. Η \(f \) είναι παραγωγίσιμη στο \((0, +\infty)\) ως αποτέλεσμα πράξεων παραγωγίσιμων συναρτήσεων, με

\[
\frac{f'(x) = \left(1 + \ln^2 x\right)'}{x} = \frac{x \left(2 - \ln x\right)}{x^2} - \ln x - \ln^2 x =
\]

\[
= \frac{-\ln^2 x - 2\ln x + 1}{x^2} = -(\ln x - 1)^2
\]

Επειδή είναι \(f'(x) < 0 \) για κάθε \(x \in (0, e) \cup (e, +\infty) \), \(f'(e) = 0 \), προκύπτει ότι η \(f \) είναι γνησίως φθίνουσα στο \((0, +\infty)\).

Δ2. Το εμβαδόν του ορθογώνιου ΟΛΜΚ είναι:

\[
E(x) = x \cdot f(x) = x \cdot \frac{1 + \ln^2 x}{x} = 1 + \ln^2 x.
\]

Η συνάρτηση \(E(x) \) είναι παραγωγίσιμη στο \((0, +\infty)\) με:

\[
E'(x) = \frac{(1 + \ln^2 x)' = 2\ln x}{x} = \frac{2\ln x}{x},
\]

\[
E'(x) = 0 \iff \frac{2\ln x}{x} = 0 \iff \ln x = 0 \iff x = 1.
\]

\[
E(x) = \begin{cases} 1 & \text{min} \\ +\infty & \text{max} \\ -1 & 0 +\infty \end{cases}
\]

Για την τιμή \(x = 1 \), έχουμε \(f(1) = 1 \), επομένως (ΟΛ) = (ΟΚ), οπότε το ορθογώνιο είναι τετράγωνο.

Δ3. Επειδή η ευθεία \(e: y = \lambda x + \beta \) είναι παράλληλη στην εφαπτόμενη της \(C_f \) στο σημείο \(\Sigma(1, f(1)) \), \(\lambda \) είναι:

\[
\lambda = f'(1) = -1
\]

Έτσι έχουμε: \(y = -x + \beta \) με \(\beta \neq 10 \).

Επειδή η μέση τιμή των παρατηρήσεων \(x_i \) είναι \(\bar{x} = 10 \) και \(y_i = (-1)x_i + \beta \) προκύπτει ότι:

\[
\bar{y} = -10 + \beta \text{ και } S_y = -1 |S_x = 2
\]

Για να είναι το δείγμα των παρατηρήσεων \(y_i \) με \(i = 1, 2 \ldots, 10 \) ομοιογενής θα πρέπει:

\[
\frac{S_y}{|\bar{y}|} \leq 0,1
\]
\[
\frac{|y|}{2} \leq 0.1 \iff \frac{2}{|x + \beta|} \leq \frac{10}{100} \iff |x + \beta| \geq 20 \iff -10 + \beta \geq 20 \iff (-10 + \beta \leq -20 \land -10 + \beta \geq 20) \iff \beta \leq -10 \lor \beta \geq 30.
\]

Άρα: \(\beta \in (-\infty, -10] \cup [30, +\infty) \).

\[\Delta 4.\]

(i) \(A \subseteq A \cup B \) ύπαρ \(P(A) \leq P(A \cup B) \) και επειδή η \(f \) είναι γνησίως φθίνουσα είναι
\[
f(P(A)) \geq f(P(A \cup B)) \tag{1}
\]

(ii) \(A \cap B \subseteq A \cup B \) ύπαρ \(P(A \cap B) \leq P(A \cup B) \) και επειδή η \(f \) είναι γνησίως φθίνουσα είναι
\[
f(P(A \cap B)) \geq f(P(A \cup B)) \tag{2}
\]

Προσθέτοντας τις σχέσεις (1) και (2) κατά μέλη έχουμε:
\[
f(P(A)) + f(P(A \cap B)) \geq 2 f(P(A \cup B)).
\]